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Abstract. We discuss phase equilibria in the binary guest-host system with clathrate formation where the guest-
guest interaction is taken into account. The equations for phase equilibria in this system are derived for the general
case, where the initial host «-modification can include guest molecules, and where the host molecules can form
several metastable clathrate frameworks whose energies do not differ greatly from one another and from the stable
form.

We have applied these equations to the binary noble gas—hydroquinone systems for which the equations simplify
considerably. This allowed us to calculate P, T, X-phase diagrams for these systems and to compare them with
the diagrams obtained experimentally.

The model employed describes experimental results not only qualitatively (e.g., the increase of the melting
temperature of the hydroquinone a-modification with increasing content of the guest) but also quantitatively. It
has been shown that consideration of guest-guest interaction even in the hydroquinone systems, in which this
interaction is relatively small, improves the description of the phase diagrams.

Key words: Clathrate, calculation of the Phase Diagram of binary systems, the role of the guest-guest interaction,
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1. Introduction

In previous papers [1,2] we have discussed the thermodynamics of the clathrate formation
model, and interactions of the guest-guest for the monovariant equilibrium were taken into
account:
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where T is the guest component; Q% QF (or simply « and f) are stable and metastable
modifications, respectively, of the host component in the absence of the guest component. It
was shown in these papers that the dispersion and dipole interactions of the guest molecules

* Author for correspondence.



252 V. R. BELOSLUDOV ET AL.

can influence considerably the equilibrium degree of filling of the cavities of the clathrate
B-modification of the host, i.e., the stoichiometry of a compound*.

In the same papers, conditions were formulated which are necessary and sufficient for the
degree of filling to change in a stepwise fashion in one and the same framework. In this
communication the equations for phase equilibria in the binary guest-host system are derived,
the results of reference [ 1] being used. Here we discuss the general case, when the initial host
a~modification can include guest molecules (e.g., «-hydroquinone [5,6]), the host molecules
can form several metastable clathrate frameworks of similar energies, which are stabilized by
the guest molecules of the same type under corresponding thermodynamic conditions (the
latter is characteristic, e.g., of the water systems [7]). The P, T-phase diagram fragment of
the binary guest (I')-host (Q) system, shown in Figure 1, is in accordance with the above

T

()

Fig. 1. Schematic picture of the mutual arrangement of the monovariant equilibria curves near the
nonvariant point, where o, 8, v, and G phases coexist (T = Ty, P = P,) in the guest-host system, if the mole
fraction of guest X in the phases changes in the order x, < xz<x, < xq. The phase symbol in brackets
indicates the monovariant equilibrium without this phase, i.e., (o) is equivalent to y==f + G.

statement. It is evident that the appearance of new phases in the system concerned will cause
the appearance of new nonvariant points and corresponding lines of monovariant equilibria.
As has already been mentioned, we limit ourselves to the consideration of the equilibria only
for a certain part of the diagram. This approach can be easily extended to the equilibria in
the neighbourhood of the nonvariant points with a different set of phases.

For comparison with experiment, we have chosen hydroguinone-noble gas systems, for
which it is possible to make assumptions that simplify computation but from our point of view,
retain the characteristic properties of the model.

2. Phase Equilibria

2.1. MODEL

In the i-phase (i = a**, B, y) the expressions for the host component chemical potential piy,
and the guest component chemical potential uf- can be represented as

Ko = %+ KT In(1 - 3) - £-32U] M

ur = 3T, + KT In[p(1 + S)20(1 - )] @

* Jtis shown in paper [3] that the introduction of the guest-guest nondirectional interaction changes the expression
for the chemical potential of the guest molecules and the sorbtion isotherms derived in [4] but the infinence of this
interaction on the clathrate composition is not considered.

*%* From the point of view of the study of heterogenous equilibria the «-modification of the host with the guest
molecules included should be considered as a solid solution of the guest in the a-modification, but not as a new
clathrate compound, being formed in the system.
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where
U=Ul+S2UP;  T,=Ui+SUP )

where 11g; is the chemical potential of the host i-framework ; v; is the number of cavities of type
i per molecule of Q. 1U?, $UP are the energies of the dispersion and dipole interactions of
the guest molecules between each other respectively, provided that all the dipoles are orient-
ated along some axis (common for all the guest molecules in the i-phase) in one of the two
directions; an expression for £ is found in {4] and has the form:

hy = 2ma} g ¢r(T) exp[ - Wi(0)/kT] 4)

where g, is the dimension of the cavity in the i-phase, expressions for g; and ¢ (T) = ¢} are
given in [4]%; W,(0) = W, is the potential energy of the guest molecule in the host cell (the
guest-host interaction); T is the absolute temperature; & is the Boltzmann constant; S, is the
order parameter in the i-phase determined by the equation:

S n[(1+8)] = =2y, UP/KT[(1 + S)/(1 - S)] (5yk*

The equations, determining P,, T,, and the compositions of the equilibrium phases in the
nonvariant point (Figure 1), are derived from the conditions of equality of the chemical
potentials of the system components in all the phases:

RO =po=up=ng,  pi=pf=pp=pg. (6)

We shall assume that the gas phase is governed by the ideal gas laws, then the expressions
for the chemical potentials of the mixture components will be as follows (see, e.g., [8]):

ug = kT-In[Py/kT¢g],  pf =kT In[Pr/kT¢Z] (7)

where P, Pr- are partial pressures of the host component and the guest component, which
are related to x (the mole fraction of the guest in the gas phase) in the following way:

PQ:(I—xG)P’ PF:xGP9 (8)

where P is the total pressure in the system.

2.2. NONVARIANT EQUILIBRIUM

The substitution of the corresponding expressions for the chemical potentials of the system
components (1), (2), (7), (8) in (6) and the subsequent transformations lead to the set of the
transcendental equations with respect to y,, yg, ¥,» X, P, T

A'MO('@ = kTiII [(1 - yﬁ)vﬁ(i - yoc)— vm] + %(styi Uoz - Vﬁy% UB) (9)
Apf? = kTIn[(1 = y,)*(1 - yp) = *1 + 5(py3Ug - v,32U,) (10)
(1 - xg)P=A,(1-yp)exp(-vy3U,/2kT), (11)

* Here and below index i indicates for which phase g and ¢ are determined.
** Equations (1)-(5) were obtained by statistical physics methods using the discrete Ising model with admixtures
in the approximation of the mean-field type with guest molecules arranged in the centres of the cavities (for
calculation of guest-guest interaction only). For the calculation of interaction energy of the guest-host we use only
Van der Waals’ technique [4].
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L1+ S, _ 1+5 —
Ve E 80 e Tk = B, B0 o 3, T, (12)
(1 ~ Y (1 - yg)
1+S = 1+§ 5
B, Y5(1 + Sp) B)-exp(yﬁUﬁ/kT) =B, vl +5,) exp(y,U,/kT), (13)
(1 - ylg) 1- y'y)
1+8 7
xgP =B, y—?(——’—)-exp(yy U JkT), (14)
21 -y,)
where
AW =pg - pg, A= kToGexp(ug/kT), B, =kT ¢Fh . (13)

The solution of the six-equation set (9)-(14) together with (5) gives values of Py, T, v, s
y,, and xg, defining the nonvariant equilibrium of the binary guest-host system concerned.

2.3. MONOVARIANT EQUILIBRIA

(a) By using equality of the chemical potentials of the system components in the phases of
monovariant equilibrium y2 f§ + G, we obtain the set of equations (10), (11), (13), (14) with
respect to yg, y,, X and T describes curve («) taking into consideration Equation (5).

(b) Curve (f), i.e., the equilibrium y2 o + G is defined by Equations (5), (11), (14) and
Equations (9), (12) (in the last two equations index f must be substituted by y).

(c) Curve (), i.e., the equilibrium f2 « + G is defined by Equations (5), (9), (12) and
Equations (11), (14) (in the last two equations index y must be substituted by f).

(d) Curve (G) describing equilibria f 2 o + y is defined by the set of Equations (5), (9), (10),
(12) and (13).

2.4. DIVARIANT EQUILIBRIA

The conditions for the coexistence of the - and S-phases are described by Equations (5), (9),
(12); of the - and y-phases, by (5), (10), (13); of the y- and G-phases, by (5), (11), (14); of
the o- and y-phases, by (5), (9), (12) (in the last two equations index § must be substituted
by y, B— 7); of the f- and G-phases by (5), (11), (14) (y— b); and of the a- and G-phases,
by Equation (5) and Equations (11) and (14) (y— ).

2.5. P, X- AND T, X-PHASE DIAGRAMS OF THE GUEST-HOST SYSTEM

The solution of the equations given above, allows us to draw the isobaric and isothermal
sections of the state diagram of the binary system and it is convenient to pass from variable
¥.» to variable x, (where x; is a mole fraction of the guest in i-phase):

x; = vy /(L+ v,,) (16)

3. Calculation of the P, T, X-Phase Diagrams in the Binary Systems
Hydroquinone—Noble Gas

Generally, finding the solution to Equations (5), (9)—(14) is a difficult task. We shall find the
solution for the hydroguinone-noble gas system because it is one of the simplest for which
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the o and f-structures [9,10] and some thermodynamic data are known. Let us consider
equilibria in which the liquid L-phase (a dilute solution of the guest in hydroquinone melt),
the gaseous G-phase, and the a- and S-phases of hydroquinone, containing the dissolved guest
component can coexist.

Equations describing phase equilibria with the chosen set of phases are obtained from (5),
(9)-(14) by the substitution of the expression for u}, by that for the chemical potential g, of
the liquid hydroquinone L-phase and by the substitution of the expression for u}. by that for
the chemical potential uf of the guest in the melt. Since the solubility of a noble gas in
hydroquinone is low, it is possible to use expressions of the dilute solution chemical potentials
for pg, pt (see [8]). In our case, the guest molecules are not dipoles, i.e., U7 = 0.

3.1. BASIC ASSUMPTIONS

Equations (9)—(14) simplify considerably if the properties of the noble gas—hydroquinone
system components are used for which the following assumptions are valid with acceptable
accuracy.

(1) The partial vapour pressure of the host component can be neglected (2.13 x 10~ 2 atm
at 173 °C).

(2) The solubility of the guest in the melt is negligibly small.

(3) The guest-host interactions in the cavities of the a- and f-phases do not differ from each
other considerably. This assumption is based on the structural data [9,10]*. Since the cavities
in the «- and f-frameworks are practically the same, the guest-host interaction in both
frameworks in the first coordination sphere is also the same. The interaction of the guest
molecules with more remote hydroquinone molecules is essentially weaker, and the interaction
for - and p-framework does not differ significantly because their densities differ only slightly
(1.35 and 1.26 gfcm?, respectively).

(4) The guest-guest interaction in the «- and f-frameworks is small, and it can be neglected.
This assumption is doubtful. Indeed, the estimation of the maximum energy (with y = 1) of
the Xe—Xe interaction in the S-phase, according to the Lennard—Jones formula [11], gives
a value of U§~ 2400 J mol ~ ! **_ The major contribution to this value (about) 90%, is made
by the interaction of the guests, situated in the cavities, having hexagons on their boundaries
and forming ‘columns’ along the c-axis. Since the guests along the ¢-axis in the a-modification
are situated in the ‘columns’ of the same kind and at the same distance (~ 5.5 A) [9], but the
‘columns’ are situated noticeably farther from each other (22.1 instead of 9.6 A in the
B-framework), the guest-guest interaction is approximately 109, smaller. In reference [2] it
is shown that the dispersion guest-guest interaction of such order for hydroquinone clathrates
at the temperatures concerned will lead to the noticeable (109, ) change of the degree of filling
the cavities. For the lighter guest molecules this correction is correspondingly smaller.

3.2. NONVARIANT EQUILIBRIUM

From the first three assumptions it follows that g, ~ g;= g, W, ~ W= W, from which it
follows that &, ~ A4, and from Equation (12) it follows that y, ~ y, = y. We shall assume, just

* The data, used by us [9,10] agree with the data obtained more recently by [20,21] with reasonable accuracy.
** The value U2 is the energy of the dispersion interaction between the chosen molecule and all other molecules
corresponding in this case to 1 g mol. This value is twice as much as the energy of the interaction of the molecules
with each other.
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as in reference [14], that ¢€ is close to ¢£ and ¢%. Then the system of Equations (9)—(15)
will take the form:

Yo = 1 — exp[Apg/(vg — v kT, (17)
Aug*lv, = Apgfi(vs — v,), (18)
Ko yo_ exp (W/kT) (19)

O~21ra3g 1=y

(For the designation of the novariant point index ‘0’ is introduced for P, T, y, Au?.) For the
solution of Equations (17)—(19) in regard to Py, Ty, ¥,, it is necessary to know Au?, Aus®,
g, a, W. The last three values were chosen and calculated in the same way as in reference [4].
The value AuZ¥, in (17) was expressed by the expansion according to T, — T}, P, — P,

Apgf = Ap*(Ty, P)) = AH**(T, — T)/T, + AV*#(P, - P)) (20)

where T, P, are the temperature and pressure at which the degree of filling was measured
experimentally [12,13]. Using the value of p and formula (27), we shall determine
Au**(T,, P,) = —352 T mol . The choice of values for AH*# and AV* is described below
(Section 3.3). Near the melting point (T, = 445.46 K, P, = 0,021 atm*)Au** can be ex-
pressed by the expansion according to T - T, and P — P,,, limiting this expansion to the
linear terms:

Apr*'= ~ AHEZX(T = T,)/T,, + AVEN(P - P,) Q1)

where A HZ>is the heat of melting of « — Q, equal to 27130 J mol ~ ! [12]; AV£*is the volume
change during the transition from the a-phase to the L-phase, equal to 15 cm?/mol (calculated
using the a-hydroquinone melt density at 447 + 1K, p = 1.1 g/cm®). Equation (21) together
with (18) gives the expression for To(v, = 15 [9], v; = 3 [10]):

To = Tull + [V Augf/(vs — v,) + AVE*(P, — P, )YAH (22)

It follows from this equation, in particular, that in the systems under discussion T,, < T,. By
the substitution of the expression for y, (17) and for T, (22), in Equation (19) we obtain a
nonlinear equation with respect to P,. Since the third term in Equation (22) is small in
comparison with the first one for pressures P, satisfying the inequality

Py - P, < AH**/AVE* = 1.8 x 10* atm , (23)
we take its expression (as the first approximation) according to formula (22) with P, = P,
and P, is calculated according to formulae (17)-(19). Below, we use the iterative method for
the calculation of P,.

The calculated and experimental (in brackets) values of Py, T, ¥, and the parameters ¢ and
o [4] vsed by us and defining the intermolecular guest-host interaction are given in Table I.

3.3. MONOVARIANT EQUILIBRIA
The equations describing monovariant equilibria are derived by analogy with the equations

defining the nonvariant point (17)-(19), assumptions 1-4 of Section 3.1 being taken a

* Throughout this paper 1 atm = 0.101325 MPa.
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Table I. Comparison of the calculated and experimental (in brackets) data [4,12,13,16] in the nonvariant

point and at 298 K

Guest g, (K) o, (A) Calculation (experiment)
T, K Py, Yo Pigg, Yaos
atm atm
He 10.2 2.56 - - - - -
Ne 36.2 2.74 - - - - -
Ar 119.5 3.408 448.0 51.0 0.304 4.57 0.398
(34) (0.34)
Kr 166.7 3.679 447.1 15.2 0.292 0.59 0.396
(446.3) (13.8) (0.28) (0.4)
Xe 2553 4.069 446.8 5.57 0.289 0.08 0.398
(446.5) (5.8) (0.30) (0.06)
N, 95.05 3.698 4489 85.2 0.316 6.7 0.401
(5.8)
0, 1175 3.580 4479 47.1 0.303 33 0.399
CH, 142.7 3.810 4473 25.0 0.296 1.02 0.398
HCl 360 3.305 446.7 1.6 0.287 0.026 0.397
(0.01)
into account:
(a) The equilibrium a2 L + G is described by the equations
vy =1 —exp[Au**(T, P)/v kT1, (24)
kT
- 2 exp[WIkT] (25)
2na*g 1 -y,

(b) The equilibrium f= L + G is described by Equations (24) and (25), where index « must
be substituted by index f.

(c) The equilibrium f< « + L is described by Equation (24) and the following equations
Vo =yp=yand

(vg = v )AuE*(T, P) = v, Au*(T, P). (26)
(d) The equilibrium f= « + G is described by Equation (25) and y, = y,= y and
y =1 exp[Au(T, P)/(y; ~ v kT]. @7)

To draw the monovariant curves near the nonvariant point we shall express AuZ* by the
first-order expansion in series AT =7 — T, and AP = P - P,,.

Apt*(T, P) = Apk® — AHE*AT/T, + AVE*AP. (28)

The analogous expansions is correct for Au’# and Au* . From the conditions of the nonvar-
iant equilibrium it follows that:

ApG=v, = ApgPlve = Augli(vs — v,) (29)

which allows us to determine Apf§* and Aug?. In the region concerned we shall neglect the
dependence of AHL*AH*®, AH*® and AVI* AV AV on T and P. Then
AVE* = AVE*=15cm’/mol; AV = AV = —-5cm’/mol; AVEE = AVE* + AVP =
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= 10 cm>®/mol. The value of AH*, has been determined as being small: in [14] a value of
~ 544 J mol ~ ! is given, in [15] values of —700-750 and - 1088 J mol ! are given, and in
[16] values of — 670, and —214J mol~*! at 25°C are given. If we assume that AH*# is of
the order mentioned and that it does not depend on temperature, the calculation of the
equilibrium fe « + G at high temperatures gives values different from values obtained
experimentally [12]. We have made the reverse calculation using the data on the phase
diagram for this equilibrium [12, 13]. The value of Au®* (T, P,) calculated at a temperature
of the order of 446 K for the systems Q-Kr, Q-Xe [12] according to (27) is equal to
— 352 + 17 J mol ~ ' *, which agrees with the value obtained by direct measurements at 298 K
[17]. That is why in calculations in the whole temperature interval we have assumed that
AH* ~ 0, then AH**~ AH*P,

Substituting (28) and the analogous expansions for Ap“f and Au®® into the equations
defining monovariant equilibria, it is possible to calculate numerically the P, T-phase diagram
of the binary system. In Figure 2 the calculated phase diagrams and experimental data are
given for comparison.

TK]

4504
(2555

4404

0 5710  Patm.

Fig. 2. P, T-Phase diagrams of the nydroguninone—xenon systems. Calculation: continuous lines — stable
equilibria, dotted lines — metastable equilibria. Experimental data {12] are presented by dots.

3.4, DIVARIANT EQUILIBRIA

The equations defining divariant equilibria and taking into consideration our assumption, are
as follows: the o, L-phase equilibrium is defined by Equation (24); the f, L-phase equilibrium
by Equation (24), in which index o must be substituted by f, & — f; «, G-phase equilibrium
— by Equation (25), 8, G-phase equilibrium — by Equation (25), in which « — f; the «, f-phase
equilibrium by equations y, = y; = yand (27); and the L, G-phase equilibrium by the equation
X, = 1. These equations allow us to draw P, X- and T, X-sections of the P, T, X-diagram
phase. P, X- and T, X-sections for the system Q-Xe are given in Figure 3.

* This value was calculated without taking into account the guest-guest interaction.
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P=10 atm.

T.K TRl 4508

420 420

380("

380

Q

"o’? 01 02 x/? 0 xZ 0t 02 x/’} X

7T=298K T=446K T=4468K
P,
41 ; 730
‘ |
: t J 565
! |
1 |
i |
1 ]
- % s' !
— E 1 ]
£0.0753 N {
T T L T
0 xPaor 02 xp 0 xgai 0 xfor X

Fig. 3. Isobaric and isothermal sections of the P, T, X-phase diagram of the hydroquinone—xenon system.
X7, X} are mole fractions of a guest component in the hypothetic case, when the cavities in - and
B-hydroquinone frameworks are completely filled.

4. Taking into Account the Guest-Guest Interaction

In hydroquinone clathrates {especially at high temperatures), the guest-guest interaction is
weaker than in other clathrates, since the cavities are relatively small (molecules with relatively
small energy of dispersion interaction can be placed in them), and the volume of the cavities
is a small part of the whole crystal volume*. But even in these systems, the guest-guest
interaction is rather clearly revealed. In Table II values of Au*, obtained from the data
concerning the clathrate composition for three variants of calculation are given. They are
(Ap* = Ap):

(1) a-hydroquinone does not dissolve the guest component and the guest-guest interaction
in the B-phase is extremely small (approximation of Van der Waals and Platteeuw [4]),

Ay = RTIn(1 - p). (30)

* In clathrate hydrates with cubic structure 1 this interaction for the guests of the same type is mare than twice
as strong as in hydroquinone.
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Table Il.  Calculation® of AuJ mol~! for hydroquinone from the data on the degree of filling the cavities:
Ap, calculated without regard for the guest component solubility in the ¢-modification and without regard
for the guest-guest interaction; Ay, calculated with regard for this solubility; Ay, calculated with regard for
the guest solubility and the guest-guest interaction.

Guest T,K P, atm y Apy Ap, Apsy
Ar 298.2 34 0.340 —-343 - (-334)
Kr 446.3 13.8 0.280 - 407 -339 -329
3532 23 0.280 -322 - (=-311)
328.2 1.19 0.310 —337 - (-324)
303.2 0.55 0.330 -337 - (-321)
298.2 0.40 0.340 - 343 - (~-327)
Xe 446.5 5.8 0.300 - 441 —368 - 341
353.2 0.6 0.370 —452 -377 -336
328.2 0.26 0.390 —450 -375 -329
CH, 298.3 0.83 0.391 -410 -342 -320
2336 0.47 0.399 ~ 400 -334 -311
CH,F 323.0 0.33 0.383 —432 -360 -
298.2 0.12 0.416 - 445 -371 -

2 The correction for Au as a result of the pressure change in the interval concerned is negligible and has
been ignored.

(2) a-hydroquinone dissolves the guest component, but the guest-guest interaction is not
taken into account. In this case (when the condition y, = y; = y is observed, see above),

A, = (% = v)RTIa(l - y). (1)

(3) A correction for the guest-guest interaction is inserted into Ay,. For the simplification
of the calculation with acceptable accuracy for the systems concerned we can consider

Uy~ Up=U,  Aps = (5= w)IRTIn(l - ) - y2UP2] (32)

(derived from (9), the conditions mentioned above were observed).

From Table II it can be seen that Ay does not depend definitely on temperature in all the
cases in the interval 280—446 K within the range of the experimental error. It testifies to the
fact that the absolute value of AH* is not more than 40-60 J mol™'. The values of Ay, and
Ay, evidently depend on the nature of the guest: the bigger the guest-guest Van der Waals
interaction, the bigger is the absolute value of Ap. This suggests that the guest-guest interaction
makes a noticeable contribution to the clathrate stoichiometry and must not be neglected. The
value of Ap; does not depend on the nature of the guest within experimental accuracy.

It is interesting to note that in all probability in the systems with Ar (298.2 K) and Kr (at
298.2-353.2 K) the metastable equilibrium is realized, with the participation of a-hydroqui-
none, which has not dissolved the guest-component in itself. Values of Ay, (in brackets in
Table II), calculated for this supposition form all the data available, that are characterized by
a mean value of —326 + 10 J mol~'*. Some experimental facts suggest that realization of
the metastable equilibrium concerned is possible. It would be natural to suppose that in the
systems discussed the rate of clathrate formation increases with the increase of Van der Waals
interaction of the guests with each other and with the framework. It confirms, e.g., the data in

* As it is evident from the above it is not necessary for every system to introduce its own value Ay explaining
Ap changes by the f-framework distortion as it has been done in work [16]. The assumption of the f-framework
in the systems discussed seems artificial, since the molecules of the guest set discussed have dimensions that do
not exceed the dimensions of the hydroquinone f-framework cavity.
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reference [ 16] where it is noted, that CH, F reacts with hydroquinone practically immediately
after the necessary pressure is achieved, but the CH, /hydroquinone reaction has an induction
period of the order of 36-48 h. On the other hand, in a number of papers [4,12,13,17-19]
it is noted that clathrate formation in the Q-guest systems at temperatures below 100 °C is
hampered. To avoid the kinetic difficulties connected with the «-hydroquinone destruction,
the authors tried various methods: including the use of an inert solvent [4,17-19] and
vibromilling [12,13]. But with all these methods for the initiation of a reaction it is necessary
to create pressures (concentration), exceeding essentially equilibrium pressures (e.g., even for
xenon it must be four times higher [41]). Such supersaturation cannot be created for the a-phase
since here conditions are created under which it is unstable (the S-phase is realized). There-
fore, to our mind, from the point of view of the attainment of the true equilibrium the only
reliable experiments are those which were carried out at high temperatures (7> 100 °C) and
with ‘reactive’ heavy guests.

Since the guest-guest interactions in the systems concerned are small, the corrections
dealing with these interactions can be taken into consideration according to the theory of
perturbation. In the first approximation from Equations (9)-(14) (taking into consideration
dispersion interactions and, according to assumption 3, for such estimation it is enough to
consider U, ~ Ug = U) for the changes in the nonvariant point Ty, Py, Y, it follows that:

Aylye = (yo — DUJ2KT,, (33)

AP[P, = y,U[2kT, (34)

and AT~ U, - Uy (for Xe, taking into consideration that U, # U, AT/T,~4.5 x 107>,
Corrections for formulae (33) and (34) for the @-Xe system are Ay/y ~ 0.07, Ap/p ~ - 0.1.

Corrections for the mono- and divariant equilibria are calculated in a similar way.

In Figure 4 the calculated curves y(T) are given for the monovariant equilibrium 2 o + G
for the three cases described at the beginning of this Section. In the same figure, known
experimental data are given. The experimental data for Xe, CH,, and Kr (at T = 446.3 K)
are well described by curve 3, i.e., with regard to the guest-guest interaction. The data for
CH, F seem reasonable, too. The experimental data for Ar and Kr at temperatures below

Y
] o Xe
13 A Kr
\QHL ¢+ o Ar

0.21

"0 40 TK

Fig. 4. Calculated curves for the monovariant equilibrium f==« + G: curve 1 — calculation according to
[4], equation (30), curve 2 — according to equation (31), curves 3 — according to (32) with introduction of
corrections for the guest-guest interaction. Experimental data [12] are presented by dots.
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100 ° C are satisfactorily described by curve 1, one of the explanations of this is given earlier
in this work. The set of equations has no solution for He and Ne. It points to the fact that
there is no pressure under which the f-phase becomes more stable than the a-phase. The last
conclusion is correct only with in the accuracy of the assumptions made.

The authors would not like to consider the results obtained by them as absolutely ir-
reproachable, since a number of assumptions, made to simplify the solution of the set of
equations and the inaccuracy of some of the initial data undoubtedly make the final results
less accurate. However, even in the ideal approximation (without regard for the guest-guest
interaction) taking into account the guest solubility in the a-phase gives not only the qualita-
tively correct P, T, X-phase diagram representation (¢.g. a noticeable increase of the melting
point of the hydroquinone a-modification in the presence of the guest) but also quite a
satisfactory quantitative description. Taking into account the guest-guest interaction makes
this description better.
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